Prediction of Length-of-day Using Gaussian Process Regression
نویسندگان
چکیده
The predictions of Length-Of-Day (LOD) are studied by means of Gaussian Process Regression (GPR). The EOP C04 time-series with daily values from the International Earth Rotation and Reference Systems Service (IERS) serve as the data basis. Firstly, well known effects that can be described by functional models, for example effects of the solid Earth and ocean tides or seasonal atmospheric variations, are removed a priori from the C04 time-series. Only the differences between the modelled and actual LOD, i.e. the irregular and quasi-periodic variations, are employed for training and prediction. Different input patterns are discussed and compared so as to optimise the GPRmodel. The optimal patterns have been found in terms of the prediction accuracy and efficiency, which conduct the multi-step ahead predictions utilising the formerly predicted values as inputs. Finally, the results of the predictions are analysed and compared with those obtained by other predictionmethods. It is shown that the accuracy of the predictions are comparable with that of other prediction methods. The developed method is easy to use.
منابع مشابه
Prediction of the main caving span in longwall mining using fuzzy MCDM technique and statistical method
Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving potential is imperative in the planning stage of a longwall project. The span of the main caving is the quantitative criterion that represents cavability. In this paper, two approaches are p...
متن کاملUNDERSTANDING BEHAVIOR OF ANTINEOPLASTIC MOLECULES BASED ON MLR MODELS
New statistic based models provide a wide area of prediction equipments for different science areas. Among these fields biology have just entered the contest of interdisciplinary sciences. Drug discovery is a long and expensive process which could be decreased with theoretical approaches. In this study, 500 reported assayed anti cancer molecules were extracted from Science Direct articles, sket...
متن کاملFast Gaussian Process Regression using KD-Trees
The computation required for Gaussian process regression with n training examples is about O(n) during training and O(n) for each prediction. This makes Gaussian process regression too slow for large datasets. In this paper, we present a fast approximation method, based on kd-trees, that significantly reduces both the prediction and the training times of Gaussian process regression.
متن کاملAssociation between CRP Level on Admission Day and Length of Hospitalization and Engraftment in Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation
Background and purpose: Several studies investigated the role of C-reactive protein (CRP) during transplantation and inflammation, and clinical outcomes after stem cell transplantation. In this study, we examined the relationship between the earliest CRP level on admission day, and the first outcome after transplantation, myeloid and platelet engraftment, and the length of hospitalization in p...
متن کاملPrediction of Red Mud Bound-Soda Losses in Bayer Process Using Neural Networks
In the Bayer process, the reaction of silica in bauxite with caustic soda causes the loss of great amount of NaOH. In this research, the bound-soda losses in Bayer process solid residue (red mud) are predicted using intelligent techniques. This method, based on the application of regression and artificial neural networks (AAN), has been used to predict red mud bound-soda losses in Iran Alumina C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015